
Total copy-number segmentation using CBS

Henrik Bengtsson

NA

Abstract

The Circular Binary Segmentation (CBS) method partitions a genome into segments of
constant total copy numbers (TCNs) based on DNA microarray data. The method also
calls CBS was designed to work with data from any DNA microarray technology and
generation, including Affymetrix and Illumina.

This document shows how to use the PSCBS package to run CBS on a tumor sample.

Keywords: copy numbers, genomic aberrations

This vignette is distributed as part of the PSCBS package, which is available on CRAN
(https: // cran. r-project. org/). The authors very much appreciate feedback on this

document.

1

https://cran.r-project.org/

Contents

1 Background 3

2 Preparing data to be segmented 3
2.1 Locus-level total copy-number signals . 3
2.2 Dropping TCN outliers . 3

3 CBS segmentation 3
3.1 Skipping centromeres and other large gaps . 3
3.2 Identifying TCN segments . 4
3.3 Displaying genomic TCN profiles . 5

4 Calling segments 5

5 Saving results 5
5.1 Writing segments to a tab-delimited text file . 5

6 Experimental 5
6.1 Pruning segmentation profile . 5
6.2 Report generation . 6

2

1 Background

We will here use a small example data set to illustrate how to setup the data in a format
suitable for CBS, how to identify segments, how to call them, and how to plot and export the
segmentation results. The statistical model and the algorithm behind CBS is explained in detail
in Olshen et al. (2004); Venkatraman and Olshen (2007).

2 Preparing data to be segmented

The CBS method requires total copy-number (TCN) estimates. More precisely, it requires TCN
ratios for a sample of interest relative to a reference (y). The genomic location of the loci in
form of chromosome and physical position are also required.

2.1 Locus-level total copy-number signals

In this example we will use a small example data set part of the PSCBS package. It can be
loaded as:

> data <- PSCBS::exampleData("paired.chr01")

> data <- data[, c("chromosome", "x", "CT")]

> colnames(data)[3] <- "y"

> str(data)

’data.frame’: 73346 obs. of 3 variables:

$ chromosome: int 1 1 1 1 1 1 1 1 1 1 ...

$ x : int 1145994 2224111 2319424 2543484 2926730 2941694 3084986 3155127..

$ y : num 1.625 1.071 1.406 1.18 0.856 ...

In additional to the mandatory fields (chromosome, x, and C this data set also contains The
latter will not be used here.

2.2 Dropping TCN outliers

There may be some outliers among the TCNs. In CBS (Olshen et al., 2004; Venkatraman and
Olshen, 2007), the authors propose a method for identifying outliers and then to shrink such
values toward their neighbors (”smooth”) before performing segmentation. At the time CBS
was developed it made sense to not just to drop outliers because the resolution was low and
every datapoint was valuable. With modern technologies the resolution is much higher and we
can afford dropping such outliers, which can be done by:

> data <- dropSegmentationOutliers(data)

Dropping TCN outliers is optional.

3 CBS segmentation

3.1 Skipping centromeres and other large gaps

The CBS method does not take the physical locations (in units of nucleotides) of the loci in to
account when segmenting the data, only their relative ordering along the genome. This means
that after having ordered the loci along genome, it will treat two ”neighboring” loci that are on
both sides of the centromere equally as two neighboring loci that are only few hundred bases
apart. This may introduce erroneous change points that appears to be inside the centromere

3

and biological impossible interpretation of the identified copy-number states. The same issues
occur for other large gaps of the genome where there are no observed signals.

To avoid this, although not mandatory, we will locate all gaps of the genome where there are
no observed loci. As a threshold we will consider a region to be a ”gap” if the distance between
the two closest loci is greater than 1Mb.

> gaps <- findLargeGaps(data, minLength = 1e+06)

> gaps

chromosome start end length

1 1 120992604 141510002 20517398

which shows that there is a 20.5Mb long gap between 121.0Mb and 141.5Mb on Chromosome 1.
This is the centromere of Chromosome 1. Gaps cannot be specified directly. Instead they need
to be give as part of a set of ”known” segments, which is done as:

> knownSegments <- gapsToSegments(gaps)

> knownSegments

chromosome start end length

1 1 -Inf 1.21e+08 Inf

2 1 1.21e+08 1.42e+08 20517398

3 1 1.42e+08 Inf Inf

Below, we will use this to tell CBS to segment Chromosome 1 in three independent segments,
where the first segments is from the beginning of the chromosomes (hence ’-Inf’) to 120.1Mb,
the second from 120.1-141.5Mb (the above gap), and the third is from 141.5Mb to the end of the
chromosome (hence ’+Inf’). Just as CBS segments chromosomes independently of each other, it
also segments priorly known segments independently of each other. Specifying known segments
is optional.

3.2 Identifying TCN segments

We are now ready to segment the locus-level TCN signals. This is done by1:

> fit <- segmentByCBS(data, knownSegments = knownSegments,

+ seed = 48879, verbose = -10)

Note that this may take several minutes when applied to whole-genome data.
The result of the segmentation is a set of segments identified to have the same underlying

TCN levels. In this particular case, 9 TCN segments were found:

> getSegments(fit, simplify = TRUE)

sampleName chromosome start end nbrOfLoci mean

1 <NA> 1 554484 86993745 26846 1.38

2 <NA> 1 86993745 87005243 2 3.19

3 <NA> 1 87005243 120992603 10647 1.39

4 <NA> 1 120992604 141510002 0 NA

5 <NA> 1 141510003 185527989 13434 2.07

6 <NA> 1 185527989 199122065 4018 2.71

7 <NA> 1 199122065 206512702 2755 2.59

8 <NA> 1 206512702 206521352 14 3.87

9 <NA> 1 206521352 247165315 15581 2.64

Note how Segment #4 has no mean-level estimates. It is because it corresponds to the centromere
(the gap) that was identified above. CBS did indeed try to segment it, but since there are no
data points, all estimates are missing values.

1We fix the random seed in order for the results of this vignette to be exactly reproducible.

4

3.3 Displaying genomic TCN profiles

To plot the TCN segmentation results, do:

plotTracks(fit)

which displays TCN as in Figure 1. To zoom in on a particular region, do:

plotTracks(fit, xlim=c(120,244)*1e6)

Figure 1: Segments identified by CBS. The TCN signals with the TCN mean levels (purple).

4 Calling segments

TBA.

5 Saving results

5.1 Writing segments to a tab-delimited text file

To write the TCN segmentation results to file, do:

pathname <- writeSegments(fit, name="MySample", simplify=TRUE)

6 Experimental

In this section we illustrate some of the ongoing and future work of the PSCBS package. Please
be aware that these methods are very much under construction, possibly incomplete and in worst
case even incorrect.

6.1 Pruning segmentation profile

By using hierarchical cluster of the segment means it is possible to prune the TCN profile such
that change points with very small absolute changes are dropped. If change points are dropped
this way, this results in a smaller number of segments, which are hence longer.

> fitP <- pruneByHClust(fit, h = 0.25, verbose = -10)

5

Figure 2: Pruned TCN segments plotted as in Figure 1.

6.2 Report generation

A multipage PDF report that contains both whole-genome and per-chromosome summaries and
figures can be generated by:

> report(fit, sampleName="CBS", studyName="CBS-Ex", verbose=-10)

By default, the reports are written to directory reports/<studyName>/ under the current work-
ing directory. In addition to the PDF, that directory also contains subdirectory figures/ holding
all generated figure files (e.g. PNGs and PDFs) for easy inclusion elsewhere.

References

Olshen, A. B., Venkatraman, E. S., Lucito, R., and Wigler, M. (2004). Circular binary segmen-
tation for the analysis of array-based dna copy number data. Biostatistics, 5(4), 557–572.

Venkatraman, E. S. and Olshen, A. B. (2007). A faster circular binary segmentation algorithm
for the analysis of array CGH data. Bioinformatics, 23(6), 657–663.

6

Appendix

Session information

� R version 4.4.1 (2024-06-14), x86_64-pc-linux-gnu

� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

� Time zone: Etc/UTC

� TZcode source: system (glibc)

� Running under: Ubuntu 24.04.1 LTS

� Random number generation:

� RNG: L’Ecuyer-CMRG

� Normal: Inversion

� Sample: Rejection

� Matrix products: default

� BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3

� LAPACK:
/usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so;
LAPACK version3.12.0

� Base packages: base, datasets, grDevices, graphics, methods, stats, utils

� Other packages: DNAcopy 1.79.0, PSCBS 0.67.0, R.devices 2.17.2, R.methodsS3 1.8.2,
R.oo 1.26.0, R.utils 2.12.3

� Loaded via a namespace (and not attached): R.cache 0.16.0, R.rsp 0.46.0,
aroma.light 3.35.0, base64enc 0.1-3, buildtools 1.0.0, codetools 0.2-20, compiler 4.4.1,
digest 0.6.37, future 1.34.0, globals 0.16.3, knitr 1.48, listenv 0.9.1, maketools 1.3.1,
matrixStats 1.4.1, parallel 4.4.1, parallelly 1.38.0, sys 3.4.3, tools 4.4.1, xfun 0.48

This report was automatically generated using rfile() of the R.rsp package. Total processing
time after RSP-to-R translation was 14.5 secs.

7

	Background
	Preparing data to be segmented
	Locus-level total copy-number signals
	Dropping TCN outliers

	CBS segmentation
	Skipping centromeres and other large gaps
	Identifying TCN segments
	Displaying genomic TCN profiles

	Calling segments
	Saving results
	Writing segments to a tab-delimited text file

	Experimental
	Pruning segmentation profile
	Report generation

