
Package: R.huge (via r-universe)
August 25, 2024

Version 0.10.1

Depends R (>= 2.10.0)

Imports R.methodsS3 (>= 1.7.0), R.oo (>= 1.23.0), R.utils (>= 1.34.0)

Title Methods for Accessing Huge Amounts of Data [deprecated]

Author Henrik Bengtsson [aut, cre, cph]

Maintainer Henrik Bengtsson <henrikb@braju.com>

Description DEPRECATED. Do not start building new projects based on
this package. Cross-platform alternatives are the following
packages: bigmemory (CRAN), ff (CRAN), BufferedMatrix
(Bioconductor). The main usage of it was inside the
aroma.affymetrix package. (The package currently provides a
class representing a matrix where the actual data is stored in
a binary format on the local file system. This way the size
limit of the data is set by the file system and not the
memory.)

License LGPL (>= 2.1)

LazyLoad TRUE

URL https://github.com/HenrikBengtsson/R.huge

BugReports https://github.com/HenrikBengtsson/R.huge/issues

Repository https://henrikbengtsson.r-universe.dev

RemoteUrl https://github.com/HenrikBengtsson/R.huge

RemoteRef master

RemoteSha 582c504381ce7dd0751d2408a5bc688119c382d1

Contents
R.huge-package . 2
AbstractFileArray . 3
FileMatrix . 6
FileVector . 9

Index 13

1

https://github.com/HenrikBengtsson/R.huge
https://github.com/HenrikBengtsson/R.huge/issues

2 R.huge-package

R.huge-package Package R.huge

Description

This package has been deprecated. Do not start building new projects based on it.

DEPRECATED. Do not start building new projects based on this package. Cross-platform alterna-
tives are the following packages: bigmemory (CRAN), ff (CRAN), BufferedMatrix (Bioconductor).
The main usage of it was inside the aroma.affymetrix package. (The package currently provides a
class representing a matrix where the actual data is stored in a binary format on the local file system.
This way the size limit of the data is set by the file system and not the memory.)

Requirements

This package requires the following CRAN packages: R.methodsS3, R.oo and R.utils.

Installation and updates

To install this package, use install.packages("R.huge").

To get started

To get started, see:

1. FileVector.

2. FileMatrix.

How to cite this package

Please cite [1] below.

License

The releases of this package is licensed under LGPL version 2.1 or newer.

The development code of the packages is under a private licence (where applicable) and patches sent
to the author fall under the latter license, but will be, if incorporated, released under the "release"
license above.

References

[1] H. Bengtsson, The R.oo package - Object-Oriented Programming with References Using Stan-
dard R Code, In Kurt Hornik, Friedrich Leisch and Achim Zeileis, editors, Proceedings of the 3rd
International Workshop on Distributed Statistical Computing (DSC 2003), March 20-22, Vienna,
Austria. https://www.r-project.org/conferences/DSC-2003/Proceedings/

https://www.r-project.org/conferences/DSC-2003/Proceedings/

AbstractFileArray 3

Author(s)

Henrik Bengtsson

AbstractFileArray Class representing a persistent array stored in a file

Description

Package: R.huge
Class AbstractFileArray

Object
~~|
~~+--AbstractFileArray

Directly known subclasses:
FileByteMatrix, FileByteVector, FileDoubleMatrix, FileDoubleVector, FileFloatMatrix, FileFloatVec-
tor, FileIntegerMatrix, FileIntegerVector, FileMatrix, FileShortMatrix, FileShortVector, FileVector

public static class AbstractFileArray
extends Object

Note that this is an abstract class, i.e. it is not possible to create an object of this class but only
from one of its subclasses. For a vector data type, see FileVector. For a matrix data type, see
FileMatrix.

Usage

AbstractFileArray(filename=NULL, path=NULL, storageMode=c("integer", "double"),
bytesPerCell=1, dim=NULL, dimnames=NULL, dimOrder=NULL, comments=NULL,
nbrOfFreeBytes=4096)

Arguments

filename The name of the file storing the data.

path An optional path where data should be stored.

storageMode The storage mode() of the data elements.

bytesPerCell The number of bytes each element (cell) takes up on the file system. If NULL, it
is inferred from the storageMode argument.

dim A numeric vector specifying the dimensions of the array.

dimnames An optional list of dimension names.

dimOrder The order of the dimensions.

comments An optional character string of arbitrary length.

nbrOfFreeBytes The number of "spare" bytes after the comments before the data section begins.

4 AbstractFileArray

Details

The purpose of this class is to be able to work with large arrays in R without being limited by the
amount of memory available. Data is kept on the file system and elements are read and written
whenever queried.

Fields and Methods

Methods:

as.character Returns a short string describing the file array.
as.vector Returns the elements of a file array as an R vector.
clone Clones a file array.
close Closes a connection to the data file of the file array.
delete Deletes the file array from the file system.
dim Gets the dimension of the file array.
dimnames Gets the dimension names of a file array.
finalize Internal: Clean up when file array is deallocated from memory.
flush Internal: Flushes the write buffer.
getBasename Gets the basename (filename) of the data file.
getBytesPerCell Gets the number of bytes per element in a file array.
getCloneNumber Gets the clone number of the file array.
getComments Gets the comments for this file array.
getDataOffset Gets file position of the data section in a file array.
getDimensionOrder Gets the order of dimension.
getExtension Gets the filename extension of the file array.
getFileSize Gets the size of the file array.
getName Gets the name of the file array.
getPath Gets the path (directory) where the data file lives.
getPathname Gets the full pathname to the data file.
getSizeOfComments Gets the number of bytes the comments occupies.
getSizeOfData Gets the size of the data section in bytes.
getStorageMode Gets the storage mode of the file array.
isOpen Checks whether the data file of the file array is open or not.
length Gets the number of elements in a file array.
open Opens a connection to the data file of the file array.
readAllValues Reads all values in the file array.
readContiguousValues Reads sets of contiguous values in the file array.
readHeader Read the header of a file array data file.
readValues Reads individual values in the file array.
setComments Sets the comments for this file array.
writeAllValues Writes all values to a file array.
writeEmptyData Writes an empty data section to the data file of a file array.
writeHeader Writes the header of a file array to file.
writeHeaderComments -
writeValues Writes values to a file array.

AbstractFileArray 5

Methods inherited from Object:
$, $<-, [[, [[<-, as.character, attach, attachLocally, clearCache, clearLookupCache, clone, detach,
equals, extend, finalize, getEnvironment, getFieldModifier, getFieldModifiers, getFields, getInstan-
tiationTime, getStaticInstance, hasField, hashCode, ll, load, names, objectSize, print, save

Maximum number of elements

It is only the header that is kept in memory, not the data, and therefore the maximum length of a
array that can be allocate, is limited by the amount of available space on the file system. Since
element names (optional) are stored in the header, these may also be a limiting factor.

Element names

The element names are stored in the header and are currently read and written to file one by one.
This may slow down the performance substantially if the dimensions are large. For optimal opening
performance, avoid names.

For now, do not change names after file has been allocated.

File format

The file format consist of a header section and a data section. The header contains information about
the file format, the length and element names of the array, as well as data type (storage mode()), the
size of each element. The data section, which follows immediately after the header section, consists
of all data elements with non-assigned elements being pre-allocated with zeros.

For more details, see the source code.

Limitations

The size of the array in bytes is limited by the maximum file size of the file system. For instance,
the maximum file size on a Windows FAT32 system is 4GB (2GB?). On Windows NTFS the limit
is in practice ~16TB.

Author(s)

Henrik Bengtsson

References

[1] New Technology File System (NTFS), Wikipedia, 2006 https://en.wikipedia.org/wiki/
NTFS.

https://en.wikipedia.org/wiki/NTFS
https://en.wikipedia.org/wiki/NTFS

6 FileMatrix

FileMatrix Class representing a persistent matrix stored in a file

Description

Package: R.huge
Class FileMatrix

Object
~~|
~~+--AbstractFileArray
~~~~~~~|
~~~~~~~+--FileMatrix

Directly known subclasses:
FileByteMatrix, FileDoubleMatrix, FileFloatMatrix, FileIntegerMatrix, FileShortMatrix

public static class FileMatrix
extends AbstractFileArray

Usage

FileMatrix(..., nrow=NULL, ncol=NULL, rownames=NULL, colnames=NULL, byrow=FALSE)

Arguments

... Arguments passed to AbstractFileArray.

nrow, ncol The number of rows and columns of the matrix.

rownames, colnames
Optional row and column names.

byrow If TRUE, data are stored row by row, otherwise column by column.

Details

The purpose of this class is to be able to work with large matrices in R without being limited by the
amount of memory available. Matrices are kept on the file system and elements are read and written
whenever queried. The purpose of the class is not to provide methods for full matrix operations, but
instead to be able to work with subsets of the matrix at each time.

For more details, AbstractFileArray.

FileMatrix 7

Fields and Methods

Methods:

[-
[<- -
as.character Returns a short string describing the file matrix.
as.matrix Returns the elements of a file matrix as an R matrix.
colnames Gets the column names of a file matrix.
getByRow Checks if elements are stored row by row or not.
getColumnOffset -
getMatrixIndicies -
getOffset -
getRowOffset -
ncol Gets the number of columns of the matrix.
nrow Gets the number of rows of the matrix.
readFullMatrix -
readValues -
rowMeans Calculates the means for each row.
rowSums Calculates the sum for each row.
rownames Gets the row names of a file matrix.
writeValues -

Methods inherited from AbstractFileArray:
as.character, as.vector, clone, close, delete, dim, dimnames, finalize, flush, getBasename, getBytes-
PerCell, getCloneNumber, getComments, getDataOffset, getDimensionOrder, getExtension, get-
FileSize, getName, getPath, getPathname, getSizeOfComments, getSizeOfData, getStorageMode,
isOpen, length, open, readAllValues, readContiguousValues, readHeader, readValues, setComments,
writeAllValues, writeEmptyData, writeHeader, writeHeaderComments, writeValues

Methods inherited from Object:
$, $<-, [[, [[<-, as.character, attach, attachLocally, clearCache, clearLookupCache, clone, detach,
equals, extend, finalize, getEnvironment, getFieldModifier, getFieldModifiers, getFields, getInstan-
tiationTime, getStaticInstance, hasField, hashCode, ll, load, names, objectSize, print, save

Column by column or row by row?

If the matrix elements are to be accessed more often along rows, store data row by row, otherwise
column by column.

Supported data types

The following subclasses implement support for various data types:

• FileByteMatrix (1 byte per element),

• FileShortMatrix (2 bytes per element),

• FileIntegerMatrix (4 bytes per element),

8 FileMatrix

• FileFloatMatrix (4 bytes per element), and

• FileDoubleMatrix (8 bytes per element).

Author(s)

Henrik Bengtsson

Examples

library("R.utils")
verbose <- Arguments$getVerbose(TRUE)

pathname <- "example.Rmatrix"
if (isFile(pathname)) {

file.remove(pathname)
if (isFile(pathname)) {
stop("File not deleted: ", pathname)

}
}

-
Create a new file matrix
-
verbose && enter(verbose, "Creating new matrix")
The dimensions of the matrix
nrow <- 20
ncol <- 5
X <- FileByteMatrix(pathname, nrow=nrow, ncol=ncol, byrow=TRUE)
verbose && exit(verbose)

verbose && enter(verbose, "Filling it with data")
rows <- c(1:4,7:10)
cols <- c(1)
x <- 1:length(rows)
writeValues(X, rows=rows, cols=cols, values=x)
verbose && exit(verbose)

verbose && enter(verbose, "Getting data again")
y <- readValues(X, rows=rows, cols=cols)
verbose && exit(verbose)
stopifnot(all.equal(x,y))

verbose && enter(verbose, "Setting data using [i,j]")
i <- c(20:18, 13:15)
j <- c(3:2, 4:5)
n <- length(i) * length(j)
values <- 1:n
X[i,j] <- values
verbose && enter(verbose, "Validating")
print(X)
print(X[])
print(X[i,j])

FileVector 9

stopifnot(all.equal(as.vector(X[i,j]), values))
verbose && exit(verbose)
verbose && exit(verbose)

-
Open an already existing file matrix
-
verbose && enter(verbose, "Getting existing matrix")
Y <- FileByteMatrix(pathname)
verbose && exit(verbose)

print(Y[])
Y[5,1] <- 55
print(Y[])
print(X[]) # Note, X and Y refers to the same instance

-
Clone a matrix
-
Z <- clone(X)
Z[5,1] <- 66
print(Z[])
print(Y[])

Remove clone again
delete(Z)

-
Close all matrices
-
close(X)
close(Y)

Remove original matrix too
delete(X)

FileVector Class representing a persistent vector stored on file

Description

Package: R.huge
Class FileVector

Object
~~|
~~+--AbstractFileArray

10 FileVector

~~~~~~~|
~~~~~~~+--FileVector

Directly known subclasses:
FileByteVector, FileDoubleVector, FileFloatVector, FileIntegerVector, FileShortVector

public static class FileVector
extends AbstractFileArray

Usage

FileVector(..., length=NULL, names=NULL)

Arguments

... Arguments passed to AbstractFileArray.

length The number of elements in the vector.

names Optional element names.

Details

The purpose of this class is to be able to work with large vectors in R without being limited by
the amount of memory available. Data is kept on the file system and elements are read and written
whenever queried.

For more details, AbstractFileArray.

Fields and Methods

Methods:

[-
[<- -
names Gets the element names of a file vector.

Methods inherited from AbstractFileArray:
as.character, as.vector, clone, close, delete, dim, dimnames, finalize, flush, getBasename, getBytes-
PerCell, getCloneNumber, getComments, getDataOffset, getDimensionOrder, getExtension, get-
FileSize, getName, getPath, getPathname, getSizeOfComments, getSizeOfData, getStorageMode,
isOpen, length, open, readAllValues, readContiguousValues, readHeader, readValues, setComments,
writeAllValues, writeEmptyData, writeHeader, writeHeaderComments, writeValues

Methods inherited from Object:
$, $<-, [[, [[<-, as.character, attach, attachLocally, clearCache, clearLookupCache, clone, detach,
equals, extend, finalize, getEnvironment, getFieldModifier, getFieldModifiers, getFields, getInstan-
tiationTime, getStaticInstance, hasField, hashCode, ll, load, names, objectSize, print, save

FileVector 11

Supported data types

The following subclasses implement support for various data types:

• FileByteVector (1 byte per element),

• FileShortVector (2 bytes per element),

• FileIntegerVector (4 bytes per element),

• FileFloatVector (4 bytes per element), and

• FileDoubleVector (8 bytes per element).

Author(s)

Henrik Bengtsson

Examples

library("R.utils")
verbose <- Arguments$getVerbose(TRUE)

pathname <- "example.Rvector"
if (isFile(pathname)) {

file.remove(pathname)
if (isFile(pathname)) {
stop("File not deleted: ", pathname)

}
}

-
Create a new file vector
-
verbose && enter(verbose, "Creating new vector")
The length of the vector
length <- 1e6
X <- FileDoubleVector(pathname, length=length)
verbose && exit(verbose)
print(X)

verbose && enter(verbose, "Filling it with data")
idxs <- c(1:4,7:10)
x <- 1:length(idxs)
writeValues(X, indices=idxs, values=x)
verbose && exit(verbose)

verbose && enter(verbose, "Getting data again")
y <- readValues(X, indices=idxs)
verbose && exit(verbose)
stopifnot(all.equal(x,y))

verbose && enter(verbose, "Getting and setting data using [i,j]")
print(X[1:20])
i <- 13:15
X[i] <- 99:98

12 FileVector

print(X[1:20])
verbose && exit(verbose)

delete(X)

rm(X)

Index

∗ classes
AbstractFileArray, 3
FileMatrix, 6
FileVector, 9

∗ package
R.huge-package, 2

AbstractFileArray, 3, 6, 9, 10
as.character, 4, 7
as.matrix, 7
as.vector, 4

character, 3
clone, 4
close, 4
colnames, 7

delete, 4
dim, 4
dimnames, 4

FileByteMatrix, 3, 6
FileByteMatrix (FileMatrix), 6
FileByteVector, 3, 10
FileByteVector (FileVector), 9
FileDoubleMatrix, 3, 6
FileDoubleMatrix (FileMatrix), 6
FileDoubleVector, 3, 10
FileDoubleVector (FileVector), 9
FileFloatMatrix, 3, 6
FileFloatMatrix (FileMatrix), 6
FileFloatVector, 3, 10
FileFloatVector (FileVector), 9
FileIntegerMatrix, 3, 6
FileIntegerMatrix (FileMatrix), 6
FileIntegerVector, 3, 10
FileIntegerVector (FileVector), 9
FileMatrix, 2, 3, 6
FileShortMatrix, 3, 6
FileShortMatrix (FileMatrix), 6

FileShortVector, 3, 10
FileShortVector (FileVector), 9
FileVector, 2, 3, 9
finalize, 4
flush, 4

getBasename, 4
getByRow, 7
getBytesPerCell, 4
getCloneNumber, 4
getComments, 4
getDataOffset, 4
getDimensionOrder, 4
getExtension, 4
getFileSize, 4
getName, 4
getPath, 4
getPathname, 4
getSizeOfComments, 4
getSizeOfData, 4
getStorageMode, 4

isOpen, 4

length, 4
list, 3

mode, 3, 5

names, 10
ncol, 7
nrow, 7
numeric, 3

Object, 3, 6, 9
open, 4

R.huge (R.huge-package), 2
R.huge-package, 2
readAllValues, 4
readContiguousValues, 4

13

14 INDEX

readHeader, 4
readValues, 4
rowMeans, 7
rownames, 7
rowSums, 7

setComments, 4

TRUE, 6

vector, 3

writeAllValues, 4
writeEmptyData, 4
writeHeader, 4
writeValues, 4

	R.huge-package
	AbstractFileArray
	FileMatrix
	FileVector
	Index

