Title: | Modelling of Expectiles |
---|---|
Description: | Methods for fitting a simplex or polyhedral cone to multivariate data, for doing expectile regression and skyline/baseline estimation. |
Authors: | Pratyaksha Wirapati, Henrik Bengtsson, Mark Robinson |
Maintainer: | Henrik Bengtsson <[email protected]> |
License: | LGPL (== 2.1) |
Version: | 0.3.2 |
Built: | 2024-12-06 03:54:51 UTC |
Source: | https://github.com/HenrikBengtsson/expectile |
Fit a simplex or polyhedral cone to multivariate data by decomposing data PxN matrix
, where
is a PxM
matrix
,
is a "mostly non-negative" MxN
matrix
, and
is a PxN
matrix
of noise, all with .
## S3 method for class 'matrix' sfit2(y, M=dim(y)[1] + 1, w=rep(1, dim(y)[2]), lambda=2, alpha=0.05, family=c("biweight", "huber", "normal"), robustConst=4.685, tol=0.001, maxIter=60, Rtol=1e-07, priorX=NULL, priorW=NULL, initX=NULL, fitCone=FALSE, verbose=FALSE, ...)
## S3 method for class 'matrix' sfit2(y, M=dim(y)[1] + 1, w=rep(1, dim(y)[2]), lambda=2, alpha=0.05, family=c("biweight", "huber", "normal"), robustConst=4.685, tol=0.001, maxIter=60, Rtol=1e-07, priorX=NULL, priorW=NULL, initX=NULL, fitCone=FALSE, verbose=FALSE, ...)
y |
A PxN |
M |
Number of vertices, M-1 <= P. |
.
w |
An optional |
lambda |
A scalar vertex assigment parameter in [1,Inf). |
alpha |
A |
family |
A |
robustConst |
A |
tol |
A positive |
maxIter |
The maximum number of iterations in estimation step. |
Rtol |
A postive |
priorX , priorW
|
(Optional) Prior simplex PxM |
initX |
(Optional) An initial simplex PxM |
fitCone |
If |
verbose |
if |
... |
Not used. |
Given multidimensional data matrix Y with P rows (variables)
and N columns (observations), decompose Y into two matrices,
X (P-by-M) and B (M-by-N) as
,
where P may be larger than M-1.
In simplex fitting mode, for each observation
sums to one, and mostly non-negative. The columns of X are the
estimated vertices of the simplex enclosing most points.
In cone fitting mode, the first column of X is apex of the cone, while the others are directions of the rays emanating from the apex, with the vector norms standardized to one. The first row of B is always equal to one, and the remaining rows are mostly non-negative. They don't necessarily sum to one.
Returns a named list
structure elements:
X |
the fitted simplex, as a PxM |
B |
Affine coefficients, as an MxN |
Algorithm and native code by Pratyaksha (Asa) Wirapati. R interface by Henrik Bengtsson.
[1] P. Wirapati, & T. Speed, Fitting polyhedrial cones and
simplices to multivariate data points, Walter and Eliza Hall Institute
of Medical Research, December 30, 2001.
[2] P. Wirapati and T. Speed, An algorithm to fit a simplex
to a set of multidimensional points, Walter and Eliza Hall Institute
of Medical Research, January 15, 2002.
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Example with simulated data # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Number of observations n <- 20000 # Offset and cross talk a0 <- c(50,300) A <- matrix(c(1,0.2,0.5,1), nrow=2, ncol=2) # cross-talk # the true signal is joint gamma z <- matrix(rgamma(2*n, shape=0.25, scale=100), nrow=2, ncol=n) # Observed signal plus Gaussian error eps <- matrix(rnorm(2*n, mean=0, sd=10), nrow=2, ncol=n) y <- A %*% z + a0 + eps layout(matrix(1:4, nrow=2, byrow=TRUE)) par(mar=c(5,4,2,2)+0.1) lim <- c(0,1000) xlab <- expression(y[1]) ylab <- expression(y[2]) for (withPrior in c(FALSE, TRUE)) { if (withPrior) { priorX <- matrix(c(a0, 0,0, 0,0), nrow=2, ncol=3) priorW <- c(Inf,0,0) priorW <- c(+100,0,0) # Fit cone fit <- fitCone(y, priorX=priorX, priorW=priorW) ## stopifnot(identical(fit$X[,1], a0)) } else { # Fit cone fit <- fitCone(y) fit0 <- fit } cat("Estimated cone:\n") print(fit$X) plot(t(y), pch=".", xlim=lim, ylim=lim, xlab=xlab, ylab=ylab) points(fit, pch=19, cex=1.5, col="#aaaaaa") radials(fit, col="#aaaaaa", lwd=2) drawApex(fit, pch=19, cex=1, col="tomato") lines(fit, col="tomato", lwd=2) # The rectified data points xlab <- expression(hat(x)[1]) ylab <- expression(hat(x)[2]) plot(t(fit$Beta[2:3,]), pch=".", xlab=xlab, ylab=ylab) points(0,0, pch=19, cex=1.5, col="tomato") # the apex lines(c(0,0,lim[2]), c(lim[2],0,0), lwd=2, col="tomato") }
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Example with simulated data # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Number of observations n <- 20000 # Offset and cross talk a0 <- c(50,300) A <- matrix(c(1,0.2,0.5,1), nrow=2, ncol=2) # cross-talk # the true signal is joint gamma z <- matrix(rgamma(2*n, shape=0.25, scale=100), nrow=2, ncol=n) # Observed signal plus Gaussian error eps <- matrix(rnorm(2*n, mean=0, sd=10), nrow=2, ncol=n) y <- A %*% z + a0 + eps layout(matrix(1:4, nrow=2, byrow=TRUE)) par(mar=c(5,4,2,2)+0.1) lim <- c(0,1000) xlab <- expression(y[1]) ylab <- expression(y[2]) for (withPrior in c(FALSE, TRUE)) { if (withPrior) { priorX <- matrix(c(a0, 0,0, 0,0), nrow=2, ncol=3) priorW <- c(Inf,0,0) priorW <- c(+100,0,0) # Fit cone fit <- fitCone(y, priorX=priorX, priorW=priorW) ## stopifnot(identical(fit$X[,1], a0)) } else { # Fit cone fit <- fitCone(y) fit0 <- fit } cat("Estimated cone:\n") print(fit$X) plot(t(y), pch=".", xlim=lim, ylim=lim, xlab=xlab, ylab=ylab) points(fit, pch=19, cex=1.5, col="#aaaaaa") radials(fit, col="#aaaaaa", lwd=2) drawApex(fit, pch=19, cex=1, col="tomato") lines(fit, col="tomato", lwd=2) # The rectified data points xlab <- expression(hat(x)[1]) ylab <- expression(hat(x)[2]) plot(t(fit$Beta[2:3,]), pch=".", xlab=xlab, ylab=ylab) points(0,0, pch=19, cex=1.5, col="tomato") # the apex lines(c(0,0,lim[2]), c(lim[2],0,0), lwd=2, col="tomato") }